search for




 

Analysis of Crystal Structure of Bone Graft Material Using Analyses of X-Ray Diffraction and Scanning Electron Microscope Image
Int J Clin Prev Dent 2019;15(4):215-219
Published online December 31, 2019;  https://doi.org/10.15236/ijcpd.2019.15.4.215
© 2019 International Journal of Clinical Preventive Dentistry.

Kiseok Hong

Department of Periodontics, Moon Dental Hospital, Cheonan, Korea
Correspondence to: Kiseok Hong
E-mail: periohong@gmail.com
https://orcid.org/0000-0002-8308-585X
Received October 23, 2019; Revised December 6, 2019; Accepted December 11, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Objectives: The present study was to analyze the crystal structure of Bio-Oss, the representative bone graft material, through X-ray diffraction (XRD) and scanning electron microscope (SEM) image analyses.
Methods: Xenogeneic bone (Bio-Oss; Geistlich Biomaterials, Wolhusen, Switzerland) for bone graft of which particle size was in the range of 0.25-1.0 mm was used for the present study. Specimens were quickly frozen and then pulverized to conduct XRD analysis. A SEM was used to observe materials in forms of powder and monolith, respectively.
Results: The XRD pattern of the specimen showed components of bone and hydroxyapatite (HA). The broad peak appearing in the vicinity of 12.6° was seen as organic material. In the SEM, pores were observed together with the coagulation of small particles. Particles were concluded as those of small HA with sizes of around 50 nm.
Conclusions: Xenogeneic Bio-Oss consist of apatite of low crystallinity similar to the bony tissue of humans. Thus, consequences of bone graft employing Bio-Oss are expected to be different from those of bone graft using bone graft materials of high crystallinity regarding the healing process.
Keywords : apatite, bone, regeneration, hydroxyapatites, implants
References
  1. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 2004;25:987-94.
    CrossRef
  2. van den Bergh JP, ten Bruggenkate CM, Krekeler G, Tuinzing DB. Sinusfloor elevation and grafting with autogenous iliac crest bone. Clin Oral Implants Res 1998;9:429-35.
    Pubmed CrossRef
  3. Moskow BS, Lubarr A. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case. J Periodontol 1983;54:455-62.
    Pubmed CrossRef
  4. Saffar JL, Colombier ML, Detienville R. Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans. J Periodontol 1990;61:209-16.
    Pubmed CrossRef
  5. Winn SR, Uludag H, Hollinger JO. Carrier systems for bone morphogenetic proteins. Clin Orthop Relat Res 1999;(367 Suppl):S95-106.
    Pubmed CrossRef
  6. Smiler DG, Johnson PW, Lozada JL, Misch C, Rosenlicht JL, Tatum OH Jr, et al. Sinus lift grafts and endosseous implants. Treatment of the atrophic posterior maxilla. Dent Clin North Am 1992;36:151-86; discussion 187-8.
  7. Paul C, Schlickewei W, Kuner EH, Schenk RK. Bovines apatit — wertigkeit beim knochenersatz. In: Pesch HJ, ed. Osteologie aktuell. Berlin: Springer-Verlag; 1993:288-91.
    CrossRef
  8. Pittenger MF, Mackay AM, Beck SC. Characterization of xenogeneic bone material. Quintessence; 1997:87-100.
  9. Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg 1980;38:613-6.
  10. Dupoirieux L, Costes V, Jammet P, Souyris F. Experimental study on demineralized bone matrix (DBM) and coral as bone graft substitutes in maxillofacial surgery. Int J Oral Maxillofac Surg 1994;23(6 Pt 2):395-8.
    CrossRef
  11. Kirik SD, Solovyov LA, Blokhin AI, Yakimov IS. Structures of. Acta Crystallogr B 2000;56(Pt 3):419-25.
    Pubmed CrossRef
  12. Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials 2006;27:2798-805.
    Pubmed CrossRef
  13. Glimcher MJ. Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 1959;31:359-93.
    CrossRef
  14. Lee SH. Low crystalline hydroxyl carbonate apatite. J Korean Dent Assoc 2006;44:524-33.
  15. Froum SJ, Tarnow DP, Wallace SS, Jalbout Z, Cho SC, Rohrer MD, et al. The use of a mineralized allograft for sinus augmentation:an interim histological case report from a prospective clinical study. Compend Contin Educ Dent 2005;26:259-60, 262-4, 266-8; quiz 270-1.
  16. Wallace SS, Froum SJ. Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematicreview. Ann Periodontol 2003;8:328-43.
    Pubmed CrossRef
  17. Valentini P, Abensur DJ. Maxillary sinus grafting with anorganic bovine bone: a clinical report of long-term results. Int J Oral Maxillofac Implants 2003;18:556-60.
  18. Yildirim M, Spiekermann H, Biesterfeld S, Edelhoff D. Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin Oral Implants Res 2000;11:217-29.
    Pubmed CrossRef
  19. Yildirim M, Spiekermann H, Handt S, Edelhoff D. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site:a histologic and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants 2001;16:23-33.
  20. Tadjoedin ES, de Lange GL, Bronckers AL, Lyaruu DM, Burger EH. Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. J Clin Periodontol 2003;30:261-70.
    Pubmed CrossRef
  21. Jensen SS, Aaboe M, Pinholt EM, Hjørting-Hansen E, Melsen F, Ruyter IE. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants 1996;11:55-66.
  22. Lee MY, Kong YM, Wang MS, Cho JW, Chung YB. A study on the influencing factors for the bone loss of the dental implant. Int J Clin Prev Dent 2008;4:13-27.
  23. Indrasari M, Kusdhany LS, Koesmaningati H. Resorption level of edentulous alveolar bone in normal, osteopenia and osteoporosis postmenopausal women. Int J Clin Prev Dent 2012;8:141-6.
  24. Cho E, Hong K. Comparative study of two different collagen membranes in the treatment of periodontal defects: a randomized clinical trial. Int J Clin Prev Dent 2019;15:121-8.
    CrossRef


December 2019, 15 (4)